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• Computational research on non-crystalline structures are on 
the rise.
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Motivation: Geometry Optimization is Slow

• Computational workflow: optimize → electronic structure 

• Computing band structure takes 1 self-consistent step. Geometry 
optimization can take 200. 

1 hour

3 days



Motivation: Geometry Optimization is Learnable

In geometry optimization, atoms are incrementally moved towards the 
lowest energy configuration.  

Here are some trajectories.



Problem Statement

• Predict optimized coordinates from starting coordinates. 

• Capture physically insignificant, small optimizations (<0.3 Å). 

• Work with relatively few data (~101 runs).



Background: Available Force Fields

• Conventional molecular mechanics force fields 

• No commercially available ones for Pb and S 

• Not fitted to nanostructures & not accurate enough



Background: Available Force Fields

• Conventional force fields 

• No commercially available ones for PbS 

• Some active research going on 

• Neural network potentials 

• Recipes exist, but no ready-made ones for PbS 

• 0.1eV / Å force accuracy at 104 data points



Background: the Canonical NN potential
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Symmetry function features:

Every permutationally invariant function can be expressed as  
a cluster expansion of functions representable by neural nets:

E = h1
i
∑ (xi )+ h2

ij
∑ (xi ,x j )+!

Components of a normal sum does not 'interact' with each other.  
Thus 1-order cluster expansion accounts for 1-body interaction. 

LSTM neural networks can add long-range correlation as well as 
alleviate exploding gradients in long sums.

ELSTM = LSTM h
i
∑ (xi )



Result: F({xi}) and dx({xi})

Predicted vs. actual forces Predicted vs. actual optimized coordinates  
(time per run ~ 4h)

Training set: 91 quantum dots (single-point force calculation).  
Test set: 1 quantum dot (geometry optimization).



Model

For dx({xi}), coordinates are discrete. Instead of learning a infinite- 
degree-of-freedom function, we now only have to learn a finite set  
of values.
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Result: dx({xi})

Predicted vs. actual (xi - xi0) /Å, training and test set 

Training set: 13 quantum dots (geometry optimization).  
Test set: 1 quantum dot (geometry optimization). 

Time per run: ~ 20s



Summary

• Machine learning models (MLP, LSTM, Lasso) for pre-
optimizing quantum dot structures 

• Small range, high accuracy, low data requirement, at the cost of 
generality



Thank you


