Speeding up computational geometry optimization using statistical methods and neural networks

GM20171219 Presentation - Xiang Zhang

Motivation: Quantum Dots and Nanostructures

• Quantum dots are have optoelectronic and biological applications, and are fundamentally interesting.

Motivation: Quantum Dots and Nanostructures

- Quantum dots are have optoelectronic and biological applications, and are fundamentally interesting.
- Computational research on non-crystalline structures are on the rise.

Motivation: Geometry Optimization is Slow

• Computational workflow: optimize → electronic structure

Motivation: Geometry Optimization is Slow

- Computational workflow: optimize → electronic structure
- Computing band structure takes 1 self-consistent step. Geometry optimization can take 200.

Motivation: Geometry Optimization is Learnable

In geometry optimization, atoms are incrementally moved towards the lowest energy configuration.

Here are some trajectories.

Problem Statement

- Predict optimized coordinates from starting coordinates.
- Capture physically insignificant, small optimizations (<0.3 Å).
- Work with relatively few data ($\sim 10^1$ runs).

Background: Available Force Fields

- Conventional molecular mechanics force fields
 - No commercially available ones for Pb and S
 - Not fitted to nanostructures & not accurate enough

force on one complex	RMS error (kcal/mol/Å)
composite	19.6
dot size 1	21.4
dot size 2	23.0
dot size 3	16.8
dot size 4	20.9
dot size 5	18.6

Background: Available Force Fields

- Conventional force fields
 - No commercially available ones for PbS
 - Some active research going on

- Neural network potentials
 - Recipes exist, but no ready-made ones for PbS
 - 0.1eV / Å force accuracy at 10⁴ data points

Background: the Canonical NN potential

$$\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_n} \to f_1, f_2, \dots, f_m \to E \mid \overrightarrow{F} \to \overrightarrow{dx}$$

Symmetry function features:

$$f_2 = \sum_{i,j} (1 + \lambda \cos \theta_{ij})^{\zeta} e^{-\eta(r_i^2 + r_j^2)} \cos \pi (\frac{r_i}{R_C} + 1) \cos \pi (\frac{r_j}{R_C} + 1)$$

$$E = ANN(f_2), \vec{F} = -\frac{\partial E}{\partial \vec{r}}$$

Model

$$\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_n} \to f_1, f_2, \dots, f_m \to E \mid \overrightarrow{F} \to \overrightarrow{dx}$$

Symmetry function features:

$$f_2 = \sum_{i,j} (1 + \lambda \cos \theta_{ij})^{\zeta} e^{-\eta(r_i^2 + r_j^2)} \cos \pi (\frac{r_i}{R_C} + 1) \cos \pi (\frac{r_j}{R_C} + 1)$$

$$E = ANN(f_2), \vec{F} = -\frac{\partial E}{\partial \vec{x}}$$

Every permutationally invariant function can be expressed as a cluster expansion of functions representable by neural nets:

$$E = \sum_{i} h_{1}(x_{i}) + \sum_{ij} h_{2}(x_{i}, x_{j}) + \cdots$$

Components of a normal sum does not 'interact' with each other. Thus 1-order cluster expansion accounts for 1-body interaction.

LSTM neural networks can add long-range correlation as well as alleviate exploding gradients in long sums.

$$E_{LSTM} = \sum_{i}^{LSTM} h(x_i)$$

Result: $F(\{xi\})$ and $dx(\{xi\})$

Predicted vs. actual forces

Predicted vs. actual optimized coordinates (time per run $\sim 4h$)

Training set: 91 quantum dots (single-point force calculation). Test set: 1 quantum dot (geometry optimization).

Model

$$\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_n} \to \overrightarrow{dx}$$

For $dx(\{x_i\})$, coordinates are discrete. Instead of learning a infinite-degree-of-freedom function, we now only have to learn a finite set of values.

$$\overrightarrow{dx} = \sum_{i} \overrightarrow{h_1}(x_i) = \sum_{i} \overrightarrow{h_i}$$

Symmetries can be included:

$$\overrightarrow{dx}(\overrightarrow{x_i}) = dx(|x_i|) \cdot \widehat{x_i}$$

which is extendable to higher dimensions:

$$h_{x_i,x_j} = h_{ij1}\hat{x}_i + h_{ij2}\hat{x}_j + h_{ij3}(\hat{x}_i \times \hat{x}_j)$$

Result: $dx(\{xi\})$

Predicted vs. actual $(x_i - x_i^0)$ /Å, training and test set

Training set: 13 quantum dots (geometry optimization).

Test set: 1 quantum dot (geometry optimization).

Time per run: $\sim 20s$

Summary

- Machine learning models (MLP, LSTM, Lasso) for preoptimizing quantum dot structures
- Small range, high accuracy, low data requirement, at the cost of generality

