
A toolkit, framework and application for

automating DFT calculations

1 Overview

This package provides Python objects and functions for planning and carrying
out VASP calculations, handling INCAR logic, and organizing VASP runs: 1

poscar.incar('opt, cluster=nersc').run().get_contcar()

.incar('dos, cluster=nanaimo')...

It also provides a GUI (Figure 1).

What it doesn’t do is heavy lifting. It doesn’t generate adsorption structures
or do machine learning. For those, specialized tools exist. Rather, it aims to
facilitate a smooth, unobstructed VASP workflow, especially in places where
existing solutions like ase or MedeA, in my experience, work awkwardly.

Its functionality is provided through 3 separate modules: the toolkit, the
framework, and the application.

2 The toolkit

This module provides plain Python objects and functions for running VASP.

We provide a bare-bones poscar(unit_cell, positions), and rely on ase.io

for IO. ase.Atoms would’ve been perfect if it were more straightforward and
pickle-able.

We provide a getopt-style incar(opt, metal, cluster=nersc). Using python’s
exec built-in, the user can easily enforce custom rules on the incar:

if relaxation and metal:

assert ismear == 1 or 2

To run VASP, simply call functions:

write_files(incar, poscar); submit(); if complete(): retrieve()

alternatively, fluent interface

poscar.incar('opt, cluster=nersc').submit().retrieve()

No more Calculator classes with multiple inheritance. Also, ase somehow
doesn’t allow calculator.run('nersc'); we have submit() for that.

3 The framework

In software engineering, a toolkit provides tools, while a framework overarch-
ingly modifies the working of the application.

1It’ll work with any DFT software, but “INCAR” is shorter than “input parameters in-
cluding k-mesh”, and “SLURM” shorter than “supercomputing cluster queueing systems”.

1

https://github.com/xiangzhang1/yaa
https://wiki.fysik.dtu.dk/ase/

Python is synchronous. Your first ase.calc.get_energy() command will block
the session for however long it takes for the VASP computation to complete,
before you can enter the second command. For everyday research, that’s incon-
venient. It’s better to separate the planning stage from the execution stage:

planning

>>> poscar.config('opt, cluster=nersc').run().get_contcar()

.config('dos, cluster=nanaimo').run()...

>>> poscar2.config('bands, cluster=auto')...

1 hour later

>>> step()

retrieving opt. submitting dos

Tensorflow 1.x does exactly this: define a computational graph first, then exe-
cute it. dask.delayed, a graph-parallel execution library, allows something sim-
ilar. We borrow from their design pattern. Tensors hold values, and Operations
link Tensors to form a computational graph.

To use the framework, wrap objects in Tensors, and functions in Operations. If
desired, synchronous behavior can be restored similarly to tf.eager_execution

in Tensorflow 2.x, or by using the toolkit stand-alone.

4 The application

The graph-parallel framework naturally introduces a data structure for man-
aging VASP folders: nested directed graphs. Compared to ase’s list of entries
and Materials Studio’s project folders, a graph database is both scalable and
human friendly (method of loci).

Our web-based GUI (Figure 1) helps visualize the graph database, creating a
persistent “look and feel” of a project, and provides access to common function-
alities. Figure 2 explains its backend/frontend architecture.

The application is a work in progress. LinkuriousJS has been deprecated,
the backend API changed, and the ever-increasing database size highlights com-
munication overhead issues.

In addition to the 3 main components, plugins provide additional extensible
python API, currently including save/load, periodic table, electronic structure
post-processing (past work), and MLqueue (past work).

2

http://www.dcs.bbk.ac.uk/~mark/download/tois.pdf

Figure 1: GUI, WIP, picture taken from 2019 version

Framework
graph−−−−−−−⇀↽−−−−−−−−

function call
Flask

JSON−−−−−−−−−⇀↽−−−−−−−−−
HTTP request

LinkuriousJS
Visualization−−−−−−−−⇀↽−−−−−−−−
mouseDown

User

Figure 2: Data flow between the database and the UI

3

	Overview
	The toolkit
	The framework
	The application

